十字相乘法例题20道 十字相乘法公式

十字相乘法?

十四种方法之一,另外十三种分别都是:1.提公因式法 2.公式法 3.双十字相乘法 4.轮换对称法 5.拆添项法 6.配方法7.因式定理法 8.换元法 9.综合除法 10.主元法 11.特殊值法 12.待定系数法 13.二次多项式。

十字相乘法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。其实就是运用乘法公式运算来进行因式分解。[1]

十字相乘法能用于二次三项式(一元二次式)的分解因式(不一定是在整数范围内)。对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,把常数项c分解成两个因数c1,c2的积,并使a1c2+a2c1正好等于一次项的系数b。那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2)。在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程

延伸阅读

十字相乘的2种方法?

1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。

十字相乘法怎么算秒懂百科?

十字相乘法

因式分解方法

十字相乘法是因式分解中12种方法之一,另外十一种分别都是:1分组分解法 2.拆添项法 3.配方法 4.因式定理(公式法)5.换元法 6.主元法 7.特殊值法8.待定系数法 9.双十字相乘法 10.二次多项式11.提公因式法

十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x2+(a+b)x+ab的逆运算来进行因式分解。

十字分解法能用于二次三项式(一元二次式)的分解因式(不一定是整数范围内)。对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,把常数项c分解成两个因数c1,c2的积,并使a1c2+a2c1正好等于一次项的系数b。那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2)。在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x2+(p+q)x+pq=(x+p)(x+q)。

怎么十字相乘,技巧?

步骤/方式1

十字相乘法的技巧主要是把二次项系数拆成一组数字,再把常数项拆成一组数字,通过交叉相乘,使积等于一次项数字或者某个字母一次项的系数。进行延伸之后,有时候不一定就是ax^2+bc+c,可能是x^6+4a^3b^3-12b^6,它的基本方法和基础十字相乘法一样,只是拆分的时候,要注意字母的次数

步骤/方式2

巧用求根法获得系数的拆分

形如ax^2+bx+c的式子,有时候不能直接看出怎么进行十字相乘法,这个时候可以根据求根的方法来获得十字相乘法的拆分。

什么是十字相乘法?怎么用?

1、十字相乘法的方法:

十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

2、十字相乘法的用处:

(1)用十字相乘法来分解因式。

(2)用十字相乘法来解一元二次方程。

十字相乘法的优点:

用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。

十字相乘法的缺陷:

1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。

2、十字相乘法只适用于二次三项式类型的题目。

3、十字相乘法比较难学。

十字相乘法解题实例: 1)、 用十字相乘法解一些简单常见的题目 例1把m2+4m-12分解因式

分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题 解:因为 1 -2 1 ╳ 6 所以m2+4m-12=(m-2)(m+6)

例2把5×2+6x-8分解因式 分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题 解: 因为 1 2 5 ╳ -4 所以5×2+6x-8=(x+2)(5x-4)

版权声明