数学归纳法的一般步骤?
数学归纳法步骤:
1、证明当n=1时命题成立。
2、假设n=m时命题成立,那么可以推导出在n=m+1时命题也成立。(m代表任意自然数)。
1)当n=1时,显然成立。
2)假设当n=k时(把式中n换成k,写出来)成立,
则当n=k+1时,(这步比较困难,化简步骤往往繁琐,考试时可以直接写结果)该式也成立。
由(1)(2)得,原命题对任意正整数均成立。
数学归纳法就是一种证明方式。
通过过归纳,可以使杂乱无章的数学条理化,使大量的数学系统化。归纳是在比较的基础上进行的。通过比较,找出数学间的相同点和差异点,然后把具有相同点的数学归为同一类,把具有差异点的数学分成不同的类。最终达到数学上的证明。
延伸阅读
数学归纳法进行证明的步骤?
基本步骤
(一)第一数学归纳法:
一般地,证明一个与自然数n有关的命题P(n),有如下步骤:
(1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但也有特殊情况;
(2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。
综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。
(二)第二数学归纳法:
对于某个与自然数有关的命题P(n),
(1)验证n=n0时P(n)成立;
(2)假设n0≤nn0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立;
综合(1)(2),对一切自然数n(≥n0),P(n),Q(n)都成立。
数学常识中演绎法和归纳法是什么?
演绎法是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程。演绎推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用。演绎推理的最典型、最重要的应用,通常存在于逻辑和数学证明中。
归纳法是根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理(简称归纳)。归纳是从特殊到一般的过程,它属于合情推理。
归纳法和演绎法在应用上并不矛盾,有些问题可采用前者,有些则采用后者。而更多情况,将两者结合着应用,则能收到更好的效果。
数学归纳法的基本内容?
数学归纳法(簡稱:MI)是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立。除了自然数以外,广义上的数学归纳法也可以用于证明一般良基关系结构,例如:集合论中的树(集合论)。这种广义的数学归纳法应用于数学逻辑和计算机科学领域,称作结构归纳法。
需要留意的是,数学归纳法虽然名字中有“归纳”,但是实际上数学归纳法并不属于不严谨性(数学)的归纳法,实际上是属于完全严谨的演绎推理法。
最简单和常见的数学归纳法是证明当n等于任意一个自然数时某命题成立。证明分下面两步:
证明当n=0时命题成立。
证明如果在n=m时命题成立,那么可以推导出在n=m+1时命题也成立。(m代表任意自然数)
这种方法的原理在于:首先证明在某个起点值时命题成立,然后证明从一个值到下一个值的过程有效。当这两点都已经证明,那么任意值都可以通过反复使用这个方法推导出来。把这个方法想成多米诺效应也许更容易理解一些。例如:你有一列很长的直立着的多米诺骨牌,如果你可以:
证明第一张骨牌会倒。
证明只要任意一张骨牌倒了,那么与其相邻的下一张骨牌也会倒。
那么便可以下结论:所有的骨牌都会倒。
数学归纳法的应用步骤
用数学归纳法证题要恰当运用分析法,主要有如下三个步骤:
①归纳基础:证n取第一个值时命题成立。
②证传递性:由成立证明时命题成立。
③得出结论:综合,时命题成立。
什么是数学归纳法?
数学归纳法是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立。除了自然数以外,广义上的数学归纳法也可以用于证明一般良基结构
数学归纳法有几种?
1、第一数学归纳法。确定一个表达式在所有自然数范围内是成立的或者用于确定一个其他的形式在一个无穷序列是成立的。
2、第二数学归纳法。数理逻辑和计算机科学广义的形式的观点指出能被求出值的表达式是等价表达式。
3、倒推归纳法。证明数列前n项和与通项公式的成立。
4、螺旋式归纳法。证明和自然数有关的不等式。