菱形的判定
菱形,又称等边四边形,是指在同一平面内,有一组邻边相等的平行四边形,也指四边都相等的四边形,由菱叶片的形状而得名。菱形是中心对称图形,也是轴对称图形,对称轴有两条,即两条对角线所在直线,对角线互相垂直平分且平分每一组对角。
棱形基本判定:
1、一组邻边相等的平行四边形是菱形
2、四边相等的四边形是菱形
3、对角线互相垂直且平分的四边形是菱形
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。菱形的中点四边形是矩形(对角线互相垂直的四边形的中点四边形定为菱形 ,对角线相等的四边形的中点四边形定为矩形。)
菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。
延伸阅读
判定菱形的五种方法
菱形的判定定理:
总的来说有三种:
1、四条边都相等的四边形
2、对角线相互垂直的平行四边形
3、有一组邻边相等的平行四边形
下面具体证明一下:
1、四条边相等的四边形是菱形。
证明:
∵AB=CD,BC=AD,
∴四边形ABCD是平dao行四边形(两组对边分别相等的四边形是平行四边形).
又∵AB=BC,
∴四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形).
2、对角线互相垂直的平行四边形是菱形。
证明:
∵ 四边形ABCD是平行四边形,
∴ OA=OC(平行四边形的对角线相互平分)。
又∵AC⊥BD,
∴ BD所在直线是线段AC的垂直平分线,
∴ AB=BC,
∴ 四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形)。
3、有一组邻边相等的平行四边形是菱形。
RF是三角形ABD的中位线,于是RF∥AD,
同理:GH∥AD,RH∥BE,FG∥BE,所以有RF∥GH,RH∥FG,
所以四边形RFGH是平行四边形;
第二步证明△ACD≌△BCE,则AD=BE,于是有RH=RF;所以四边形RFGH是菱形。
菱形判定条件是什么
菱形的判定方法有好几种。一般有以下几种情形。
第一种是先判定它是平行四边形,再证明出邻边相等。这个时候这个平行四边形就能成为菱形。
第二个是,证明出四条边都相等。那么这个四边形也能成为菱形。
第三种判定方法是先判定出它是平行四边形。再证出他的对角线垂直。这样的平行四边形也是菱形。
菱形的五种判定方法
在同一平面内,如果一个平行四边形有一组邻边相等,那么它就是菱形;如果这个平行四边形对角线互相垂直,那么它就是菱形。菱形首先是平行四边形,除此以外应满足判定条件有:
1、四条边均相等;
2、对角线互相垂直平分;
3、两条对角线分别平分每组对角;
4、有一对角线平分一个内角。
菱形的判定方法
1、一组邻边相等的平行四边形是菱形;
2、对角线互相垂直的平行四边形是菱形;
3、四条边均相等的四边形是菱形;
拓展:
菱形性质:
1、在一个平面内,有一组邻边相等的平行四边形是菱形。
角A=C,角B=C。特殊时A、B两角也相
2、菱形具有平行四边形的一切性质。
3、菱形的四条边都相等。
4、菱形的对角线互相垂直平分且每一条对角线分别平分一组对角。
5、菱形是轴对称图形,对称轴有2条,即两条对角线所在直线,菱形还是中心对称图形。
6、菱形的面积等于两条对角线乘积的一半;当不易求出对角线长时,就用平行四边形面积的一般计算方法计算菱形面积S=底×高。
主要特点:
1、对角线互相垂直且平分,并且每条对角线平分一组对角。
2、四条边都相等。
3、对角相等,邻角互补。
4、菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形,中心对称点是它的对角线交点。
5、在60°的菱形中,短对角线等于边长,长对角线是短对角线的根号3倍。
6、菱形是特殊的平行四边形,它具备平行四边形的一切性质。
证明菱形的判定方法
1,有四条边都相等的四边形是菱形;
2,对角线互相垂直的平行四边形是菱形。
1.己知四边形ABCD中,AB=BC=CD=AD,求证四边形ABCD是菱形。
证明∵AB=CD,BC二AD
∴四边形ABCD是平行四边形,∵AB=BC,
∴平行四边形是菱形。
菱形的定义,性质,判定是什么
菱形定义:有一组邻边相等的平行四边形叫做菱形。
菱形性质:
菱形除了具有平行四边形的一切性质外,还有一些特殊性质:
1.菱形的四条边都相等;
2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心.
菱形判定:
1.定义法:有一组邻边相等的平行四边形是菱形.
2.对角线互相垂直的平行四边形是菱形.
3.四条边相等的四边形是菱形.