什么非线性规划?
非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划是20世纪50年代才开始形成的一门新兴学科。
延伸阅读
〈〉在数学非线性规划中是什么意思?
线性规划—-Linear programming ,是指求线性函数在线性(不等式或等式)约束下达最(小或大)值的问题. 线性规划广泛应用于工农业、军事、交通运输、决策管理与规划、科学实验等领域. 高中的一般用枚举法(比如固定比较小的区域里面的整数解之类的)和图像性质来解(比如可行域里面用目标函数的斜率来解)等等
excel非线性规划和线性规划的区别?
线性规划(Linear programming,简称LP)是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
线性规划研究线性约束条件下线性目标函数的极值问题的数学理论和方法。线性规划就是用方程组求值,因为直线的焦点就是所求的最值。
非线性规划具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。 非线性规划研究一个 n元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是线性函数的情形则属于线性规划。
非线性规划与线性规划的区别主要在于解决问题的模型和方法略有差别。你也可以简单的理解为线性规划是用直线解决问题,而非线性规划是曲线甚至更复杂的图像解决问题。
非线性规划与线性规划有什么区别吗?
线性规划是所有约束条件和目标函数都是线性的,即未知数的次数均为一次。整数规划是线性规划中未知数只能取整数的那种特例。非线性规划是约束条件或目标函数中含有非线性的规划问题。
非线性规划的特点?
非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈(H.W.Kuhn) 和托克 (A.W.Tucker) 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用。
非线性规划的优缺点?
线性规划法是解决多变量最优决策的方法,是在各种相互关联的多变量约束条件下,解决或规划一个对象的线性目标函数最优的问题,即给与一定数量的人力、物力和资源,如何应用而能得到最大经济效益。
其中目标函数是决策者要求达到目标的数学表达式,用一个极大或极小值表示.约束条件是指实现目标的能力资源和内部条件的限制因素,用一组等式或不等式来表示。
线性规划是决策系统的静态最优化数学规划方法之一.它作为经营管理决策中的数学手段,在现代决策中的应用是非常广泛的,它可以用来解决科学研究、工程设计、生产安排、军事指挥、经济规划。
缺点:对于数据的准确性要求高,只能对线性的问题进行规划约束,而且计算量大。有由线性规划演变的非线性规划法等等后续的方法弥补,但是计算量增加许多。
非线性规划grg和非线性规划内点法有区别吗?
有区别的。非线性规划grg又称罚函数法,是求解约束极小化问题的较好的算法,其基本原理是在原目标函数中加上一个罚函数,而得到一个增广目标函数;非线性规划内点法又称障碍函数法,是一种求解线性规划或非线性凸优化问题的算法;它们都是将原问题转化为一系列无约束问题来求解;这两种构造方法各有其优缺点;相对而言,非线性规划grg式结构较简单,但其导数(如果可导的话)复杂,更适用于不利用导数的无约束极小化算法;而非线性规划内点法式虽然较复杂,但是导函数却相对较简单,因而更适用于利用导数的无约束极小化算法。
什么是非线性约束条件?
非线性约束条件是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划是20世纪50年代才开始形成的一门新兴学科。具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个 n元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。
目标函数和约束条件都是线性函数的情形则属于线性规划。