曼尔德公式(弗里德曼方程式)

弗里德曼公式什么意思?

弗里德曼公式是广义相对论框架下描述空间上均一且各向同性的膨胀宇宙模型的一组方程。

最早由亚历山大·弗里德曼在1922年得出,他通过在弗里德曼-勒梅特-罗伯逊-沃尔克度规下对具有给定质量密度和压力的流体的能量-动量张量应用爱因斯坦引力场方程而得到。

数学绝密公式?

1、Tupper自引用公式

Tupper自引用公式是一种非常有趣的公式,如果单纯看公式本身你看不出来什么。但是如果在计算机上运行,并把运行结果在坐标系中以图形的方式表达出来的时候,这个图形跟公式本身是一模一样的。也就是公式能够自己把自己表达出来。

2、BBP算法

如果问你pi(圆周率)的第12094854921位数字是什么?那么你应该怎么做?正常情况下,你需要计算pi到这个位数,然后你才能知道这个位置的数字是多少。然而,有天才的数学家发现了一个公式,通过这个公式我们能随意计算pi任意位的数字,而不需要知道这个位数之前或者之后的数字。这就是BBP算法。BBP算法的发现极具巧合性,本来这个算法是为了更精确地计算pi的数值,但是发现者突然意识到这个公式可以计算任意位置的pi的数字。

3、黎曼zeta函数

我们都知道素数,这些整数只能被自己和1整除。数学里面有一个分支专门研究素数,数学家们花费了大量的时间和精力来预测素数在数列中的分布。素数的分布看起来是随机的,但是黎曼zeta函数似乎能准确预测素数的位置。

4、薛定谔公式

薛定谔公式是量子力学最基本的公式,这个公式描述了量子系统随时间演化的基本规则。其在量子力学世界的地位同牛顿第二定律的地位是一样的。神奇的是,这个公式不是从任何其他基本公式推导出来的,而是通过最基本的逻辑推论写出来的,但是这个公式似乎跟实际世界吻合得非常好。

5、康托证明

康托证明可以说是数学界里最令人费解的证明之一,然而这个证明完完全全重新定义了什么是无穷大。首先我们需要问一个看起来极其荒谬的问题:无穷大到底有多大?这个问题看来毫无意义。然而,实际上这个问题非常重要。康托认真考虑了这个问题,并发展了对角证明法。最后,他证明了无穷大也是有大小的,有些无穷大比其他无穷大要大或者小。

6、P=NP

在计算机数学中,所有的问题都可以两类,一类是P问题,一类是NP问题。对计算机来说所有的P问题都是可解的。但是NP问题就没有那么简单了。有些问题,计算机运算数亿年也不一定能得到结果。NP问题又个非常奇特的性质,那么就是如果你给定一个解,它能轻易判断这个解是否正确,但是它自己却很难求得一个结果。在数学中P=NP就意味着所有复杂的数学问题都是计算机可解的,如果有人能证明P=NP,那么这个结论无疑是划时代的。例如,理论上能证明P=NP问题的人,能破解这个世界上的任何密码问题。

7、弗里德曼方程

俄罗斯物理学家亚历山大.弗里德曼在1920年代创造了这个公式来描述宇宙是如何膨胀的。当时人们认为宇宙是膨胀的,但是这个公式出来之后,公式的结果显示宇宙似乎根本没有膨胀。后来通过各种经验修正,这个公式得以正确描述宇宙膨胀,然而人们依然无法解释为什么宇宙在膨胀。弗里德曼预测了一种新的力,后来天文学家称之为暗能量,一直到今天,对暗能量的寻找也还在继续。

8、球形翻转

拓扑学是数学中非常重要的领域之一。拓扑学研究的是形状如何进行各种翻转和变化,而这些东西现实中大多数情况下是无法实现的。例如在拓扑学中,一个轮胎和一个茶杯是等价的。要把球的内表面变换成外表面,同时不能创造各种褶皱或者折痕是一个非常艰难的问题。在计算机出来之前,人们通过公式球得了问题的解。尽管很难理解,但是拓扑学在计算机、化学以及宇宙学等等中有非常重要的应用。

9、未来预测公式

很多数学家都想预测未来。根据英国苏塞克斯大学的一个神经系统科学家研究小组的结论,他们已经可以预测各种灾难的到来,从金融市场的崩溃到脑动脉等疾病的发生等等。事实上,这些截然不同的东西所遵守的数学趋势是非常相似。他们的公式依赖于复杂系统的信息流动以及各种相变转换。这是个非常复杂的思想,想读懂相关论文需要花费大量的精力。

费德里曼公式?

弗里德曼的货币需求函数公式Md/P=f(Y,w,Rm,Rb,Re,gP,u),其中,Md表示名义货币需求量,P表示物价水平,Y表示名义恒久收入,w表示非人力财富占总财富的比例,Rm表示货币的预期名义收益率,Rb表示债券的预期收益率,Re表示股票的预期收益率,gP表示物价水平的预期变动率,也就是实物资产的预期收益率,u表示影响货币需求的其他因素。w,u,Md三者的关系是不确定的?

弗里德曼方程的意义?

  用一组方程来定义整个宇宙,听起来似乎是一个狂妄自大的想法,但这正是俄罗斯物理学家亚历山大·弗里德曼在20世纪20年代所提出的重要思想。利用爱因斯坦的相对论,弗里德曼指出,从大爆炸开始,膨胀宇宙的特征可以用两个独立的方程来表示。

版权声明