正交设计试验?
正交试验设计,是指研究多因素多水平的一种试验设计方法。根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备均匀分散,齐整可比的特点。
正交试验设计是分式析因设计的主要方法。当试验涉及的因素在3个或3个以上,而且因素间可能有交互作用时,试验工作量就会变得很大,甚至难以实施。针对这个困扰,正交试验设计无疑是一种更好的选择。
正交设计法?
正交试验设计,是指研究多因素多水平的一种试验设计方法。根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备均匀分散,齐整可比的特点。正交试验设计是分式析因设计的主要方法。
当试验涉及的因素在3个或3个以上,而且因素间可能有交互作用时,试验工作量就会变得很大,甚至难以实施。针对这个困扰,正交试验设计无疑是一种更好的选择。正交试验设计的主要工具是正交表,试验者可根据试验的因素数、因素的水平数以及是否具有交互作用等需求查找相应的正交表,再依托正交表的正交性从全面试验中挑选出部分有代表性的点进行试验,可以实现以最少的试验次数达到与大量全面试验等效的结果,因此应用正交表设计试验是一种高效、快速而经济的多因素试验设计方法。
正交试验设计与doe区别?
正交试验设计
正交试验设计的主要工具是正交表,试验者可根据试验的因素数、因素的水平数以及是否具有交互作用等需求查找相应的正交表,再依托正交表的正交性从全面试验中挑选出部分有代表性的点进行试验,可以实现以最少的试验次数达到与大量全面试验等效的结果
doe
⑴筛选主要显著的因子
⑵找出最佳之生产条件组合
⑶证明最佳生产条件组合有再现性
正交试验设计的基本内容?
正交试验设计
使用已经造好了的表格–正交表–来安排试验并进行数据分析的一种方法。
例如作一个三因素三水平的实验,按全面实验要求,须进行3^3=27种组合的实验,且尚未考虑每一组合的重复数。若按L9(3^4)正交表安排实验,只需作9次,按L15(3^7)正交表进行15次实验,显然大大减少了工作量
正交试验表如何设计?
正交试验表
正交表是一整套规则的设计表格,用 L为正交表的代号,n为试验的次数,t为水平数,c为列数,也就是可能安排最多的因素个数。例如L9(3^4)它表示需作9次实验,最多可观察4个因素,每个因素均为3水平。一个正交表中也可以各列的水平数不相等,我们称它为混合型正交表,如L8(41×24),此表的5列中,有1列是为4水平,4列为2水平。
两个因素的正交试验怎么设计?
题主A因素有4水平,C因素有2水平,你可以将C因素的两个水平重复一次,就变成4水平,数量上就与A因素平齐,接下来你就知道怎么做了。 但是这种拟水平的正交试验设计用SPSS软件计算不方便也不准确,因此还是用混合水平正交表法处理比较好。
正交实验怎么做?
正交试验正交试验设计(Orthogonal experimental design),是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。是一种高效率、快速、经济的实验设计方法。日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。
工具/原料
计算机一台
方法/步骤
基本简介:
当分析因设计要求的实验次数太多时,一个非常自然的想法就是从析因设计的水平组合中,选择一部分有代表性水平组合进行试验。因此就出现了分式析因设计(fractional factorial designs)。
正交设计的基本特点是:用部分试验来代替全面试验,通过对部分试验结果的分析,了解全面试验的情况。
正交试验是用部分试验来代替全面试验,它不可能像全面试验那样对各因素效应、交互作用一一分析;当交互作用存在时,有可能出现交互作用的混杂。
正交表:
正交表是一整套规则的设计表格。用L为正交表的代号,n为试验的次数,t为水平数,c为列数,也就是可能安排最多的因素个数。例如L9(34),它表示需作9次实验,最多可观察4个因素,每个因素均为3水平。一个正交表中也可以各列的水平数不相等,称它为混合型正交表,如L8(4×24) ,此表的5列中,有1列为4水平,4列为2水平。根据正交表的数据结构看出,正交表是一个t行c列的表,其中第j列由数码1,2,… Sj 组成,这些数码均各出现N/S 次。
正交表具有两条性质:
(1)每一列中各数字出现的次数都一样多。
(2)任何两列所构成的各有序数对出现的次数都一样多。
所以称之谓正交表。
方案设计:
安排试验时,只要把所考察的每一个因子任意地对应于正交表的一列(一个因子对应一列,不能让两个因子对应同一列),然后把每列的数字”翻译”成所对应因子的水平。这样,每一行的各水平组合就构成了一个试验条件(不考虑没安排因子的列)。
例:
某矿物气体还原试验中,要考虑还原时间(A)、还原温度(B)、气体流速(C)、还原气体比例(D)这四个因子对全铁合量X〔越高越好)、金属化率Y(越高越好)、二氧化钛含量Z(越低越好)这三项指标的影响。希望通过试验找出主要影响因素,确定最适工艺条件。
首先根据专业知以确定各因子的水平:
时间:A1=3(小时),A2=4(小时),A3=5(小时)
温度:B1=1000(℃),B2=1100(℃),B3=1200(℃)
流速:Cl=600(毫升/分),
C2=400(毫升/分),
C3=800(毫升/分)
CO:H2:D1=1:2,D2=2:1,D3=1:1
这是四因子3水平的多指标(X、Y、Z)问题,如果做全面试验需3^4=81次试验,而用L9( 34)来做只要9次。
数据分析—方差分析:
正交表的另一个好处是简化了试验数据的计算分折。还是以[例1]为例来说明。按照表2的试验方案进行试验,测得9个转化率数据。
由总平方和与各因素平方和即可求得误差平方和,亦称剩余平方和。是总平方和减各因素平方和所得。如正交表有一空列,则该列的平方和就是误差平方和。但在正交表饱和试验的情况下,即所有各列全部排满时,误差平方和一般用各因素平方和中几个最小的平方和之和来代替,同时,这几个因素不再作进一步的分析。
自由度:φT=试验次数一1
φA,B…=水平数一1
φA×B=φA×φB
φe=φT-φA-φB-……-φD