指数函数的定义和性质?(指数函数的定义和性质是什么)

指数函数的定义和性质?

指数函数及其性质

(1)指数函数:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是 R (实数)。”

理解:【1】a^x系数为1,否则不是指数函数;【2】x须在指数位置,且不能是x的其它表达式(即只能是x本身);【3】a是常数,【4】(为什么要a>0),如果a=0,指数x≠0时函数值等于0,x=0时函数值无意义,此时自变量就不能取0了。如果a<0,那么a的x次方这个幂将不连续,且出现无法确定是否有意义的不定点。因为负数不能开偶数次方,所以当x是最简分数时,分母为偶数的指数将使得a的x次方无意义。综上:为了指数取值范围为实数所以规定a>0。【5】(a≠1)如果a=1,则y恒等于1,那么这个函数就变成了y=1常数函数,没必要在指数函数中进行研究。

简记:【1】自变量为指数,【2】系数为1,【3】底数为常数,【4】大于零不等于1。

(2)函数的图像和性质:

理解:【1】过点(0,1),因为a^0=1(它为什么等于1呢,因为a^(1-1)=a/a=1),【2】0<a<1,在定义域R(实数)上是减函数;当x>0时,小于1的数自乘次数越多越小;当x<0时,小于1的数自乘次数越多越小,但是取倒数后就变大了。【3】a>1,在定义域R(实数)上是增函数;当x>0时,大于1的数自乘次数越多越大;当x<0时,大于1的数自乘次数越多越大,但取倒数后就变小了。

简记:【1】过点(0,1),【2】a比1小减(函数),a比1大增(函数)。

指数的性质与运算法则?

指数函数的性质去看函数图像

指数运算

利用同底数幂相乘,底数不变,指数相加

指数函数有哪些性质?

一般地,形如y=a^x(a>0且a≠1) (x∈R)的函数叫做指数函数

性质

(1) 指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。

(2) 指数函数的值域为

(3) 函数图形都是上凹的。

(4) a>1时,则指数函数单调递增;若0

(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过

指数函数

程中(不等于0)函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6) 函数总是在某一个方向上无限趋向于X轴,并且永不相交。

(7) 函数总是通过(0,1)这点,(若

,则函数定过点(0,1+b))

(8) 指数函数无界。

(9)指数函数是非奇非偶函数

(10)指数函数具有反函数,其反函数是对数函数,它是一个多值函数。

指数函数的运算性质?

指数函数的性质:

(1)指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。

(2)指数函数的值域为(0,+∞)。(3)函数图形都是上凹的。

(4)a>1时,则指数函数单调递增;若0<a<1,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(不等于0)函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,并且永不相交。

(7)函数总是通过(0,1)这点,(若y=a^x+b,则函数定过点(0,1+b))(8)指数函数无界。

(9)指数函数是非奇非偶函数

(10)指数函数具有反函数,其反函数是对数函数,它是一个多值函数。

指数函数性质归纳?

函数y=a^x(a>0,且≠1)是指数函数。

定义域 R,

值域(0,+∞),

单调性

0<a<1, 减函数,

a>1, 增函数,

图像位于x轴上方,呈下凸性。

过定点(0,1)

版权声明