数学的各个三角函数诱导公式是怎么推导的?
诱导公式(口诀:奇变偶不变,符号看象限。)
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈Z)
两角和与差的三角函数公式
万能公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα
·tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα
·tanβ
2tan(α/2)
sinα=——————
1+tan2(α/2)
1-tan2(α/2)
cosα=——————
1+tan2(α/2)
2tan(α/2)
tanα=——————
1-tan2(α/2)
半角的正弦、余弦和正切公式
三角函数的降幂公式
二倍角的正弦、余弦和正切公式
三倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanα
tan2α=—————
1-tan2α
sin3α=3sinα-4sin3α
cos3α=4cos3α-3cosα
3tanα-tan3α
tan3α=——————
1-3tan2α
三角函数的和差化积公式
三角函数的积化和差公式
α+β
α-β
sinα+sinβ=2sin———·cos———
2
2
α+β
α-β
sinα-sinβ=2cos———·sin———
2
2
α+β
α-β
cosα+cosβ=2cos———·cos———
2
2
α+β
α-β
cosα-cosβ=-2sin———·sin———
2
2
1
sinα
·cosβ=-[sin(α+β)+sin(α-β)]
2
1
cosα
·sinβ=-[sin(α+β)-sin(α-β)]
2
1
cosα
·cosβ=-[cos(α+β)+cos(α-β)]
2
1
sinα
·sinβ=—
-[cos(α+β)-cos(α-β)]
2
高考数学。三角函数的诱导公式“奇变偶不变,符号看象限”的奇偶是如何定义的
- 百度:位次法
利用诱导公式求三角函数值 tan510°(求过程)
- -√33解:tan51花储羔肥薏堵割瑟公鸡0°=tan(360°+150°)=tan150°=-tan(180°-150°)=-tan30°=-√33
三角函数的诱导公式中的角度可以是任意角吗,还是必须是锐角?
- 可以是任意角
用诱导公式求cos495°三角函数的值
- cos495°=cos(135°+360°)=cos135°=sin(90°-135°)=sin(-45°)=-sin45°=-√2╱2
用一句话概括三角函数诱导公式一至六
- 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π2±α与α的三角函数值之间的关系: sin(π2+α)=cosα cos(π2+α)=-sinα tan(π2+α)=-cotα cot(π2+α)=-tanα sin(π2-α)=cosα cos(π2-α)=sinα tan(π2-α)=cotα cot(π2-α)=tanα 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k·π2±α(k∈Z)的个三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(4·π2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆 水平诱导名不变;符号看象限。 各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”. 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内切函数是“+”,弦函数是“-”; 第四象限内只有余弦是“+”,其余全部是“-”. 上述记忆口诀,一全正,二正弦,三正切,四余弦 其他三角函数知识: 同角三角函数基本关系 ⒈同角三角函数的基本关系式 倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinαcosα=tanα=secαcscα cosαsinα=cotα=cscαsecα 平方关系: sin^2(α)+cos^2(α)=1 1+t……余下全文
诱导公式,三角函数
- 诱导公式,三角函数详细过程加原理加公式加答案,谢谢
- 还需要跟具体吗
请问三角函数的诱导公式一共有几个?
- 七组,20个
三角函数诱导公式问题
- 三角函数诱导公式问题为什么解法二后面的tanα+1=1/cosα
- 解法二:两边同时除以cosa^2
高中数学三角函数诱导公式
- 我遇到一个题,是cos(α+22π7),题目里面有个tan(α+8π7)我做得一直是这个cos(α+22π7)=cos(2π+α+8π7)=cos(α+8π7)但是答案里给的是带负号的,求解,cos(2π+α+8π7)中,把α+8π7看做锐角,不是应该在第一象限吗?为什孩法粉盒莠谷疯贪弗楷么cos得出来带负号呢?
- 数学完全不会
三角函数的诱导公式sin(α+π)=-sinα,这个α一定要是锐角吗?不是锐角可以用诱导公式吗?
- sin(α+π)=-sinαα是什么角都行, 不是锐角也可以用