有关勾股定理的故事100字(有关勾股定理的故事手抄报)

有关勾股定理的故事?

勾股定理一般情况的发现和证明,那要归功于古希腊的毕达哥拉斯。这个定理在中国又称为”商高定理”,在外国称为”毕达哥拉斯定理”。

美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。

公元前十一世纪,我国周朝数学家商高就提出“勾三、股四、弦五”。勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为“勾股定理”,也有人称“商高定理”。

在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。因而西方人都习惯地称这个定理为“毕达哥拉斯定理”。

勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

延伸阅读

邹元治勾股定理的事迹?

1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”

伽菲尔德答道:“是5呀.”

小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”

伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方.”

小男孩又说:“先生,你能说出其中的道理吗?”

伽菲尔德一时语塞,无法解释了,心里很不是滋味.

勾股定理的前世今生?

定理的前世今生:

公元前十一世纪,数学家商高(西周初年人)就提出“勾三、股四、弦五”。编写于公元前一世纪以前的《周髀算经》中记录着商高与周公的一段对话。商高说:“……故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。

公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中。赵爽创制了一幅“勾股圆方图”,用数形结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。

勾股定理的历史故事?

在中国古代大约是西汉的数学著作《周髀算经》中记录着商高同周公的一段对话。周公问商高:“天不可阶而升,地不可将尽寸而度。”天的高度和地面的一些测量的数字是怎么样得到的呢?

商高说:“故折矩以为勾广三,股修四,经隅五。”

在中国古代,人们把弯曲成直角的手臂的上半部分称为“勾”,下半部分称为“股”。商高答话的意思是:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫做“商高定理”。

毕达哥拉斯和勾股定理之间的故事?

相传,毕达哥拉斯应邀参加一次豪华宴会,不知道什么原因,大餐迟迟不上桌。

善于观察和理解的毕达哥拉斯没有注意到这些,而是被脚下排列规则、美丽的方形石砖所深深吸引。他并不是欣赏它们的美丽,而是思考它们和“数”之间的关系。

于是,在大庭广众之下,他蹲在地板上,拿了画笔在选定的一块石砖上以它的对角线为边画一个正方形,结果惊奇地发现这个正方形面积恰好等于两块砖的面积和。

开始他以为这只是巧合,但当他把两块石砖拼成的矩形之对角线作另一个正方形时,这个正方形之面积相当于5块石砖的面积。这也就是说它等于以两股为边作正方形面积之和。

毕达哥拉斯被这一惊奇的发现惊呆了,他明白这绝不是一种巧合。回到家后,他又作了进一步演算,最终证明了“勾股定理”。

据说,他为了庆祝这一伟大的发现,特宰杀了一百头牛,在学院里大摆宴席狂欢。

版权声明