什么叫做三角形?
有三条线段首尾顺次连接而成的封闭图形叫三角形。这三条线段叫三角形的边,相交的点叫三角形的顶点。两条边够成的角叫三角形的内角。三角形有三个顶点,三条边,三个内角和三个外角。三角形还有三条高线,三条角平分线和三条中线。三条边的和是三角形的周长。
延伸阅读
三角形的基本知识和重要方法?
三角形的初步认识重要知识点总结
一、三角形的基本概念
三角形:不在同一条直线上的三条线段首尾相接所组成的图形。
二、三角形的分类:
锐角三角形、直角三角形、钝角三角形
三、三角形的基本性质
1.
三角形的内角和是
180
°(总结发现)。
2.
三角形的任何两边的和大于第三边(由两点之间线段最短得到)。
3.
三角形任何两边的差都小于第三边。
4.
三角形的外角:由三角形一条边的延长线和另一条相邻的边组成的角。
5.
三角形的一个外角等于和他不相邻的两个内角的和。
三角形的概念和性质?
三角形的概念:
由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫作三角形。平面上三条直线或球面上三条弧线所围成的图形,三条直线所围成的图形叫平面三角形;三条弧线所围成的图形叫球面三角形,也叫三边形。
由三条线段首尾顺次相连,得到的封闭几何图形叫作三角形。三角形是几何图案的基本图形。
三角形的性质:
1 、在平面上三角形的内角和等于180°(内角和定理)。
2 、在平面上三角形的外角和等于360° (外角和定理)。
3、 在平面上三角形的外角等于与其不相邻的两个内角之和。
推论:三角形的一个外角大于任何一个和它不相邻的内角。
4、 一个三角形的三个内角中最少有两个锐角。
5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6 、三角形任意两边之和大于第三边,任意两边之差小于第三边。
三角形的定义、性质及判定性定理?
等腰三角形:
定义:有两条边相等的三角形是等腰三角形。在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
性质:1.等腰三角形的两条腰相等;2.等腰三角形的两个底角相等;3.等腰三角形是轴对称图形;4.等腰三角形顶角的平分线、底边上的中线、底边上的高重合,它们所在的直线都是等腰三角形的对称轴。
判定:1.有两条边相等的三角形是等腰三角形;2.如果一个三角形有两个角相等,那么这两个角所对的边也相等。
等边三角形:
定义:三边都相等的三角形是等边三角形,也叫正三角形。
性质:1.等边三角形是轴对称图形,有三条对称轴,任意边的垂直平分线都是它的对称轴;2.等边三角形的三个角都相等,每个角都是60°。
判定:1.三条边都相等的三角形是等边三角形;2.有一个角是60°的等腰三角形是等边三角形;3.有两个角是60°的三角形是等边三角形。
直角三角形:
定义:有一个内角是直角的三角形叫做直角三角形。其中,构成直角的两边叫做直角边,直角边所对的边叫做斜边。
性质:1.直角三角形的两个余角互余;2.直角三角形斜边上的中线等于斜边的一半;3.直角三角形中30°角所对的直角边等于斜边的一半;4.勾股定理。
判定:1。有一个角是直角的三角形是直角三角形;2.有两个角互余的三角形是直角三角形;3.如果一个三角形一条边上的中线等于这条边的的一半,那么这个三角形是直角三角形;4.如果三角形的三边长a、b、c满足于a^2+b^2=c^2,那么这个三角形是直角三角形。
有关三角形的所有知识点?
关于三角形的所有知识点:
1、三角形的概念:在平面内,三条线段首尾相接而形成的封闭图形,就是三角形。
2、三角形内角和的度数:三角形的三个内角的度数和,等于180度。
3、三角形外角的度数:三角形的任意一个外角的度数,等于与它不相邻的两个内角度数的和。
4、三角形的分类:①、按边分:可以分为:α、任意三角形:即三边都不相等的三角形;b、等腰三角形:即有两条边相等的三角形;C、等边三角形(正三角形):即三条边都相等的三角形。②、按角分类:α、锐角三角形:即三个内角都是锐角的三角形;b、直角三角形:即三个内角中,有一个内角为直角的三角形,也叫Rt三角形;c、钝角三角形:即三个内角中,有一个内角是钝角的三角形。
5、直角三角形:①、直角三角形中,两个锐角的度数和等于90度(两个锐角互余);②、直角三角形中的勾股定理:斜边的平方等于两条直角边的平方和;③、直角三角形中,斜边上的中线等于斜边的一半;④、直角三角形中,两直角边之积等于斜边与斜边上的高之积。
6、全等三角形:①、判定定理:a、边边边(SSS);b、边角边(SAS);C、角边角(ASA);d、角角边(AAS)。②性质定理:如果两个三角形全等,那么它们的对应边相等,它们的对应角相等。③直角三角形全等:除具有一般两个三角形的性质定理和判定定理外,还有一个独特的判定定理就是:斜边直角边,也就是在两个直角三角形中,它们的斜边和其中一条直角边分别对应相等,那么这两个直角三角形就相互全等。
7、相似三角形:①、判定定理:a、三条边对应成比例;b、两个内角对应相等;C、两条边对应成比例,且它们的夹角相等。②、性质定理:α、如果两个三角形相似,那么它们的对应边分别成比例,对应角分别相等;b、两个对应边成比例的比值,叫做这两个相似三角形的相似比。两个相似三角形对应边上的高,对应边上的中线,对应角的平分线也分别成比例,它们的比就等于这两个相似三角形的相似比;C、两个相似三角形的面积等于这两个相似三角形相似比的平方。
8、等腰三角形:两腰相等,两底角相等,底边上的中线,底边上的高,顶角的平分线三线重合,简称为“三线合一”。
9、等边三角形:①、三边相等,三个内角相等,三个内角的度数分别都是60度;②、每条边上的高,中线和顶角的平分线互相重合,即“三线合一”,且三条边上的高,中线,顶角的平分线都相等,并等于正三角形边长的(根号3/2)倍。③、如果正三角形一边长为α,面积为S,那么S=(根号3/4)α^2。
10、三角形的中位线:①、中位线概念:即三角形三条边中点的连线,叫三角形的三条中位数。②、三角形的中位线平行于底边且等于底边的一半;③、三角形的三条中位线将原三角形分为四个相互全等的小三角形。
三角形的知识?
三角形在几何上是最基本平面构造图,三个线段相连封闭图形称为三角形,其内角之和为一百八十度。三角形可以分为直角三角形,锐角三形,钝角三角形,等腰三角形以及等腰正三角形。直角三角及一个角度九十度,锐角三角形就是都小于九十度的,一个角大于九十度为钝角三角形。总之三角形知识面广,运用也广。
关于三角形,你知道些什么?
三角形性质:
1 在平面上三角形的内角和等于180°(内角和定理);
2 在平面上三角形的外角和等于360° (外角和定理);
3 在平面上三角形的外角等于与其不相邻的两个内角之和。 推论:三角形的一个外角大于任何一个和它不相邻的内角。
4 一个三角形的三个内角中最少有两个锐角。
5 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。 边
6 三角形两边之和大于第三边,两边之差小于第三边。(三角形两边之和大于第三边中的两边是指两条较小的边,两边之差小于第三边的两边是指两条较大的边。)
7 在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。 8直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。 *勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2 ,那么这个三角形是直角三角形。 9直角三角形斜边的中线等于斜边的一半。 10三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。 11三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。 12 等底同高的三角形面积相等。 13 底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。 14三角形的任意一条中线将这个三角形分为两个面积相等的三角形。 15等腰三角形顶角的角平分线和底边上的高、底边上的中线在一条直线上(三线合一)。