勾股定理意思解释 勾股定理意思讲解

勾股定理意思

勾股定律(Pythagorean Theorem,别称:勾股弦定理、勾股定理)是一个基本的几何定理,最早提出并证明此定理是古希腊的毕达哥拉斯学派(公元前6世纪),在中国最早由商高提出(周朝时期)。

勾股定理指直角三角形的两条直角边长(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方,它是数学定理中证明方法最多的定理之一,也是数形结合的纽带之一。

延伸阅读

勾股定理的概念

 勾股定理:  在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(PythagorasTheorem)。是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。  定理:  如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2即直角三角形两直角边的平方和等于斜边的平方。  如果三角形的三条边a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。(称勾股定理的逆定理)希望有用。

八年级勾股定理的知识点讲解

1. 勾股定理指的是:直角三角形斜边的平方等于两直角边平方和。
2. 勾股定理的原理是通过勾股定理可以方便地求解直角三角形的边长,为后续的几何计算提供了基础。
3. 勾股定理的应用非常广泛,不仅在数学领域有很多应用,还在物理、工程、金融等领域也有着广泛的应用。
4. 除了勾股定理之外,还有其他的三角函数定理,例如正弦定理和余弦定理,它们也是解决三角形问题的常用工具。

勾股定理是怎么定义的

勾股定理是一个基本几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。勾股定理是余弦定理的一个特例。勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。“勾三股四弦五”是勾股定理最基本的公式。勾股数组程a2 + b2 = c2的正整数组(a,b,c)。(3,4,5)就是勾股数。也就是说,设直角三角形两直角边为a和b,斜边为c,那a2+b2=c2 。

数学的勾股定理是什么

  勾股定理是一个基本的几何定理,直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a2+b2=c2 。勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。勾股数组成a2+b2=c2的正整数组(a,b,c)。(3,4,5)就是勾股数。  勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最著名的例子。当整数a,b,c满足a2+b2=c2这个条件时,(a,b,c)叫做勾股数组。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a2+b2=c2。”常见勾股数有(3,4,5)(5,12,13)(6,8,10)。

勾股定理秒懂百科

勾股定理指的是:直角三角形两直角边的平方和等于斜边的平方。勾股定理是一个基本的几何定理,中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

勾股定理是什么,什么意思

勾股定理 [gōu gǔ dìng lǐ] 生词本基本释义[Pythagorean theorem] 《周髀算经》记载:西周初年商高提出的勾三股四弦五。这是勾股定理的一个特例。勾股定理就是直角三角形斜边上的正方形面积,等于两直角边上的正方形面积之和。中国古代称两直角边为勾和股,斜边为弦。勾三股四弦五就是:勾三的平方九,加股四的平方十六,等于弦五的平方二十五。说明我国很早就掌握勾股定理,西方的希腊到公元前六世纪的毕达哥拉斯时,才发现这一定理

版权声明