高一数学120分是什么水平?
高一数学120分属于一个中等偏上水平,因为高中的数学满分是150分考120分,相当于百分制度的80分成绩,相对而言还是可以的,或者说比较良好,但还不是特别优异,当然,数学成绩的提升相对而言有一定的难度,在高一属于中等偏上水平,如果在高三或者高考时能保持这样的水平,也能报考一所比较不错的大学院校
延伸阅读
高一数学补救最佳方法?
1、不要急,越急越不行,要有自信心自身能学好;
2、上课不要仅仅是听,要多思考,跟上老师的节奏,结合预习的状况来思考,真正了解所学的知识,听不明白的即时问;
3、课后即时、独立地在温习、了解知识的基础上进行训练,发觉不明白,即时解决;
4、当日的问题当日解决,每星期进行一次综合、总结,理出知识结构。因为高中知识是一个完好的体系,只学一部分,通常很难了解,如果你融会贯通以后,便会有一种突恍然大悟的感觉。
高一如何学好数学?
1、认识高一数学的特点高一数学内容难度增大,并增加数学知识的应用,要求学生会使用文字、符号和图形等数学语言表达问题进行交流,数学思想方法贯穿教材始终,对能力提出更高的要求。
2、正确对待学习中遇到的新困难和新问题高一数学内容的巨变和学习方法的落后,在学习高一数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,千万不能让问题堆积如山,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题,解决问题的能力。
3、要将被动学习模式转变为主动学习模式高一数学不是靠老师教会的,而是在老师引导下,靠自己主动思考去获取的,学习数学的最佳状态就是积极主动地,参考教学过程,对数学活动持一定的主动权,并经常能发现和推出问题。
4、要养成良好的个性品质高一数学要树立正确的学习目的,培养浓厚的学习兴趣和顽强的学习毅力,要有足够的学习信心,实事求是的科学态度,以及独立思考,勇于探索的创新精神。
新高考高一数学学什么?
高一上学期有的地方是学习必修一和必修四,必修一的主要内容是《集合》、《函数》,必修四的主要内容是《三角函数》、《向量》。但是有些地方是学习必修一和必修二,必修二的主要内容是《立体几何》,简单的《解析几何》。如初中所学习的直线方程,园的方程以及他们的一些性质关系等。
在高一上学期,必修一是一定要学的,函数这一章一定要学好,它包括函数的概念,图像,性质以及一些基本函数,如二次函数,指数函数,对数函数,幂函数等。
必修三中的内容要简单一些,包括《统计初步》、《算法》、《概率》。除 了算法外,其他内容我们在初中都已经接触过。
到了高二要学习必修五,主要内容是《数列》,《不等式》等,对于我们在高一学习的解析几何,到了高二还要学《圆锥曲线》等。当然,函数与导数,参数方程与极坐标也应该是高二学习的内容。地方不同,还有些选学的内容也不同。
2
高一数学必背知识点有哪些
【第一章:集合与函数概念】
一、集合有关概念
1.集合的含义
2.集合的中元素的三个特性:
(1)元素的确定性如:世界上的山
(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:XKb1.Com
非负整数集(即自然数集)记作:N
正整数集:N*或N+
整数集:Z
有理数集:Q
实数集:R
1)列举法:{a,b,c……}
2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x?R|x-3>2},{x|x-3>2}
3)语言描述法:例:{不是直角三角形的三角形}
4)Venn图:
4、集合的分类:
(1)有限集含有有限个元素的集合
(2)无限集含有无限个元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意:有两种可能
(1)A是B的一部分,;
(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实
例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”
即:
①任何一个集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同时BíA那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集个数:
有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集
三、集合的运算
运算类型交集并集补集
定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).
【第二章:基本初等函数】
一、指数函数
(一)指数与指数幂的运算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.
当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).
当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时,
2.分数指数幂
正数的分数指数幂的意义,规定:
0的正分数指数幂等于0,0的负分数指数幂没有意义
指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.
3.实数指数幂的运算性质
(二)指数函数及其性质
1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.
注意:指数函数的底数的取值范围,底数不能是负数、零和1.
2、指数函数的图象和性质
【第三章:第三章函数的应用】
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:
方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
求函数的零点:
(1)(代数法)求方程的实数根;
(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数.
1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
3
学好高中数学的方法是什么
1、重视基础
想要学好高中数学,首先就是要掌握好基础,基础知识都在课本中,所以,学习高中数学的第一个方法就是掌握好课本中的知识点。当运用的多了,就灵活了。同样熟悉了知识,便能提高数学成绩了。
2、总结归纳
真理是需要在实践中获得的,在各种各样的题目中,难免会有做错的情况出现。同一个类型的题目,这次错了不要拍,注意总结归纳,下次就自然不会再错了。高中数学的学习是有规律的,我们可以从练习册、课本例题中总结,还有一些重点易错的题型,更是要重点????留意。
3、上课认真听课
上课是掌握和理解数学基础知识的重要环节,所以高中生在上课的时候要认真听讲。如果有时间的话,可以在课前预习一下这节课要学的知识。这样在听课的时候就会更加认真的听课,知道什么地方该详细,什么地方可以略过,这样才不会顾此失彼