矩阵的运算?
你好,很高兴为您解答。
两个矩阵只有在其行数与列数均分别相同,而且所有相应位置的元素均相等时,才能称为相等。只有在两个矩阵的行数与列数均分别相同时,才能进行加法。矩阵与相加而得和,其中。数乘矩阵是指数域F中任何数α均可去乘F上任意矩阵而得积,即αA仍为m×n矩阵,其第i行第j列的元素为ααij,i=1,2,…,m;j=1,2,…,n。
只有一个矩阵的列数等于另一个矩阵的行数时,这两个矩阵才能进行乘法:一个m×n矩阵A=(αij)去乘一个n×p矩阵B=(bij)而得积AB是一个m×p矩阵D=(dij),其中,即AB的行数与A的行数相同,而其列数与B的列数相同。此种乘法规则也适用于分块矩阵(即将元素划分成若干小矩阵块的矩阵)。
分块时A的列的分法应与B的行的分法一致。矩阵运算有以下性质:A+B=B+A;A+(B+C)=(A+B)+C;α(A+B)=αA+αB;(α+β)A=αA+βA;α(βA)=(αβ)A;α(AB)=(αA)B=A(αB);A(BC)=(AB)C;(A+B)C=AC+BC;A(B+C)=AB+AC,这里A、B、C表示矩阵,α表示数域F中的数。
当一个m×n矩阵的全部元素均为0时,就称为零矩阵,记作Om×n。对于任意一个m×n矩阵A,恒有A+Om×n=A;且恒有惟一的一个m×n矩阵B=(-1)A,使A+B=Om×n,此B称为A的负矩阵,简记为-A。易知-A的负矩阵就是A,即-(-A)=A。
数域F上的所有m×n矩阵按上述矩阵加法和数乘矩阵运算,构成F上的一个mn维向量空间;F上的所有n阶矩阵按矩阵的加法和乘法构成一个环,称为F上的n阶全阵环。F上的n阶全阵环视为F上的n2维向量空间,就构成F上的n阶全阵代数。
延伸阅读
矩阵计算公式及运算方法?
1、方形矩阵A对应的行列式|A|用于判断矩阵是否为奇异矩阵,若|A|非0,则矩阵为非奇异矩阵,若|A|=0,则A为奇异矩阵。
2、|AB| = |A||B|
3、A的伴随矩阵AdjA的求法:
矩阵运算法则及性质
4、A的逆矩阵的求法:
矩阵运算法则及性质
5、系数矩阵加一列右端项的矩阵叫增广矩阵,英文叫做augmented matrix,记作:(A|B)
矩阵简便运算?
矩阵相乘需要前面矩阵的行数与后面矩阵的列数相同方可相乘。第一步,先将前面矩阵的每一行分别与后面矩阵的列相乘,作为结果矩阵的行列;第二步算出结果即可。
矩阵相乘最重要的方法是一般矩阵乘积。它只有在第一个矩阵的列数(column)和第二个矩阵的行数(row)相同时才有意义 。一般单指矩阵乘积时,指的便是一般矩阵乘积。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型。矩阵相乘需要前面矩阵的行数与后面矩阵的列数相同方可相乘。第一步,先将前面矩阵的每一行分别与后面矩阵的列相乘,作为结果矩阵的行列;第二步算出结果即可。
矩阵的概念及其运算?
矩阵就是N行M列(NxM)的数组。可以定义矩阵的加/减法:两个同样大小的矩阵对应元素相加/相减得到新的矩阵就是原来两个矩阵的和/差。
不过矩阵的乘法定义就稍微复杂一些了,因为并不是对应元素的乘积。一个MxN的矩阵A乘以一个NxP的矩阵B结果是一个MxP的矩阵C。积矩阵C的第 i 行第 j 列的元素是A的第 i 行和B 的第 j 列元素两两之积的和。
矩阵运算要熟记的公式?
1、矩阵的加法满足A+B=B+A;(A+B)+C=A+(B+C)。在两个数的加法运算中,在从左往右计算的顺序,两个加数相加,交换加数的位置,和不变。A+B+C=A+C+B。加法定理一个是指概率的加法定理,讲的是互不相容事件或对立事件甚至任意事件的概率计算方面的公式;另一个是指三角函数的加法定理。
2、把矩阵A的行和列互相交换所产生的矩阵称为A的转置矩阵,这一过程称为矩阵的转置。设A为m×n阶矩阵(即m行n列),第i 行j 列的元素是a(i,j),即:A=a(i,j)定义A的转置为这样一个n×m阶矩阵B,满足B=b(j,i),即 a(i,j)=b (j,i)(B的第i行第j列元素是A的第j行第i列元素),记A’=
矩阵的计算公式?
矩阵的运算 1、矩阵的加法 : 如果 是两个同型矩阵(即它们具有相同的行数和列数,比如说 ),则定义它们的和 仍为与它们同型的矩阵(即 ), 的元素为 和 对应元素的和,即: 。
给定矩阵 ,我们定义其负矩阵 为: 。这样我们可以定义同型矩阵 的减法为: 。由于矩阵的加法运算归结为其元素的加法运算,容易验证,矩阵的加法满足下列 运算律: ( 1)交换律: ; ( 2)结合律: ; ( 3)存在零元: ; ( 4)存在负元: 。2 、数与矩阵的乘法 : 设 为一个数, ,则定义 与 的乘积 仍为 中的一个矩阵, 中的元素就是用数 乘 中对应的元素的道德,即 。由定义可知: 。容易验证数与矩阵的乘法满足下列运算律: (1 ) ; (2 ) ; (3 ) ; (4 ) 。3 、矩阵的乘法:设 为 距阵, 为 距阵,则矩阵 可以左乘矩阵 (注意:距阵 德列数等与矩阵 的行数),所得的积为一个 距阵 ,即 ,其中 ,并且 。据真的乘法满足下列 运算律(假定下面的运算均有意义): ( 1)结合律: ; ( 2)左分配律: ; ( 3)右分配律: ; ( 4)数与矩阵乘法的结合律: ; ( 5)单位元的存在性: 。若 为 阶方阵,则对任意正整数 ,我们定义: ,并规定: 由于矩阵乘法满足结合律,我们有: , 。
请问矩阵的运算法则?
矩阵的运算及其运算规则
一、矩阵的加法与减法
1、运算规则
设矩阵
,
,
则
简言之,两个矩阵相加减,即它们相同位置的元素相加减!
注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的.
2、运算性质(假设运算都是可行的)
满足交换律和结合律
交换律
;
结合律
.
二、矩阵与数的乘法
1、运算规则
数
乘矩阵A,就是将数
乘矩阵A中的每一个元素,记为
或
.
特别地,称
称为
的负矩阵.
2、运算性质
满足结合律和分配律
结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA.
分配律:λ(A+B)=λA+λB.
典型例题
例6.5.1 已知两个矩阵
满足矩阵方程
,求未知矩阵
.
解 由已知条件知
三、矩阵与矩阵的乘法
1、运算规则
设
,
,则A与B的乘积
是这样一个矩阵:
(1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即
.
(2) C的第
行第
列的元素
由A的第
行元素与B的第
列元素对应相乘,再取乘积之和.
矩阵运算规则?
矩阵的基本运算为:加、减、乘法及数乘。
1、矩阵是一组排列成矩形的或者排列成行成列的数字或符号。要计算矩阵的乘法,你需要用第一个矩阵行上的元素(或数字)乘以第二个矩阵中列上的元素,再计算它们的和。矩阵乘法的步骤很简单,需要用到加法运算和乘法运算,并且还要正确摆出最终结果。
2、矩阵加法运算,两个矩阵相加,等于它们相同位置的元素相加。不过需要注意的是,只有同型矩阵,加减运算才是可行的。所谓同型矩阵指两个矩阵有相同的形状,即行数和列数都相等。