向量运算?
向量的运算法则有:
1、向量的加法;
2、向量的减法;
3、数乘向量;
4、向量的数量积;
5、向量的向量积;
6、三向量的混合积。
向量可以用一条有向线段形象地表示,线段的方向表示向量的方向,它的长度称为向量的模。向量常记为(a→),(b→)或a,b等。
向量具体运算法则:
1、向量的加法:
向量的加法:
向量的加法满足平行四边形法则和三角形法则。
向量的加法OB+OA=OC。
a+b=(x+x’,y+y’)。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
2、向量的减法:
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0。
向量的减法:
AB-AC=CB.即“共同起点,指向被向量的减法减”
a=(x,y)b=(x’,y’) 则a-b=(x-x’,y-y’)。
3、数乘向量:
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
当λ>0时,λa与a同方向;
向量的数乘:
当λ<0时,λa与a反方向;
向量的数乘当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或××反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律:
结合律:(λa)·b=λ(a·b)=(a·λb).
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ.
4、向量的数量积:
定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π.
定义:两个向量的数量积(内积、点积)是一个数量,记作a·b.若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣.
向量的数量积的坐标表示:a·b=x·x’+y·y’.
向量的数量积的运算律:
a·b=b·a(交换律);
(λa)·b=λ(a·b)(关于数乘法的结合律);
(a+b)·c=a·c+b·c(分配律);
向量的数量积的性质:
a·a=|a|的平方.
a⊥b 〈=〉a·b=0.
|a·b|≤|a|·|b|.(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)
向量的数量积与实数运算的主要不同点:
1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2.
2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c.
3、|a·b|≠|a|·|b|
4、由 |a|=|b| ,推不出 a=b或a=-b.
5、向量的向量积:
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”).若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积.
a×a=0.
a垂直b〈=〉a×b=|a||b|.
向量的向量积运算律:
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
a×(b+c)=a×b+a×c.
注:向量没有除法,“向量AB/向量CD”是没有意义的.
6、三向量的混合积:
向量的混合积:
定义:给定空间三向量a、b、c,向量a、b的向量积a×b,再和向量c作数量积(a×b)·c,
向量的混合积所得的数叫做三向量a、b、c的混合积,记作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×b)·c。
延伸阅读
向量的加减乘除怎么算?
1、向量的加法:满足平行四边形法则和三角形法则,即
2、向量的减法:如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0OA-OB=BA.即“共同起点,指向被减”,例如:a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)。
3、向量的乘法:实数λ和向量a的叉乘乘积是一个向量,记作λa,且|λa|=|λ|*|a|。当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0,方向任意。当a=0时,对于任意实数λ,都有λa=0。
4、向量的除法:a÷k=|a|/k*a的单位向量。即结果为原向量的长度缩小k倍后的向量,方向不变。
扩展资料:
一、向量加法的运算律:
1、交换律:a+b=b+a;
2、结合律:(a+b)+c=a+(b+c)。
3、加减变换律:a+(-b)=a-b
4、向量的加减乘(向量没有除法)运算满足实数加减乘运算法则。
二、向量的数乘规律:
1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)2≠a2·b2。
2、向量的数量积不满足消去律,即:由a·b=a·c(a≠0),推不出b=c。
向量运算公式?
向量运算包括向量加法、向量减法、向量数乘、点积和叉积等。具体的向量运算公式如下:
向量加法:设向量A = (a1, a2, a3),向量B = (b1, b2, b3),则向量A + B = (a1 + b1, a2 + b2, a3 + b3);
向量减法:设向量A = (a1, a2, a3),向量B = (b1, b2, b3),则向量A – B = (a1 – b1, a2 – b2, a3 – b3);
向量数乘:设向量A = (a1, a2, a3),k为常数,则kA = (ka1, ka2, ka3);
点积:设向量A = (a1, a2, a3),向量B = (b1, b2, b3),则向量A·B = a1b1 + a2b2 + a3b3;
叉积:设向量A = (a1, a2, a3),向量B = (b1, b2, b3),则向量A × B = (a2b3 – a3b2, a3b1 – a1b3, a1b2 – a2b1)。
通过向量运算公式,可以对向量进行各种运算操作,以实现向量的加减、数乘、点积、叉积等计算和应用。
向量的运算法则?
①三角形定则:三角形定则主要是将各个向量依次按照首位顺序相互连接,最后得出的结果为第一个向量的起点指向最后一个向量的重点,这种解法则是被称之为三角形定则。
②平行四边形定则:而平行四边形定则则是选择以向量的两个边作为平行四边形,而结果则是作为公共起点的一个对角线,平行四边形定则还能解决向量的减法,其中是将向量平移到公共起点上面,然后以向量的两个边作为平行四边形,最终由减向量的重点指向被减向量的重点,而这个平行四边形定则只是可以用来做两个非零非共线向量的加减。
向量计算?
向量a乘以向量b=(向量a得模长)乘以(向量b的模长)乘以cosα[α为2个向量的夹角];向量a(x1,y1)向量b(x2,y2),向量a乘以向量b=(x1*x2,y1*y2)。
印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加)。在空间直角坐标系
中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。
扩展资料:
点乘
向量A=(x1,y1)
向量B=(x2,y2)
向量A·向量B=|向量A||向量B|cosu=x1x2+y1y2=数值
u为向量A、向量B之间夹角。
叉乘
向量A×向量B=(x1y2i,x2y2j)=向量